If it's not what You are looking for type in the equation solver your own equation and let us solve it.
h^2+12h-10=0
a = 1; b = 12; c = -10;
Δ = b2-4ac
Δ = 122-4·1·(-10)
Δ = 184
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$h_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$h_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{184}=\sqrt{4*46}=\sqrt{4}*\sqrt{46}=2\sqrt{46}$$h_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(12)-2\sqrt{46}}{2*1}=\frac{-12-2\sqrt{46}}{2} $$h_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(12)+2\sqrt{46}}{2*1}=\frac{-12+2\sqrt{46}}{2} $
| 9s-2=180 | | 5+6x=3x-13+x-12 | | 0=-5x^2+8x-7 | | n=3/12n-1 | | 35x^2-66x+27=0 | | 2u=7u-85 | | -3+y=-18 | | -285+18n=2n+115n= | | -3/8x+15/8=-6x | | 72=48+12x | | 9(x–3)=9x–27 | | 5=w/5,2 | | -3(y+8)=-42 | | 5=w2,2 | | 16+4K=10(k+2 | | 5x+25=95 | | Y=8y-84 | | 10a-80=180 | | 2t-48=3t-81 | | 1/5z+1/2=21/2 | | 1/2x-8=-17 | | 8a+20=180 | | 2x=52x=26 | | 4b+1=25+2bb= | | 3b-1=9b-25 | | 16v+4=180 | | 4y-64=2y+28 | | .4b+1=25+2bb= | | 6y-54=180 | | 3b-58=4b-83 | | 4r=-5r+9r= | | (7/4)+((3x+1)/(3x-1))=3 |